
Rapidly Exploring Random Search Explorer

Aakriti Upadhyay and Chinwe Ekenna

Abstract— Motion planning for robots have generally worked
with a single goal solution but in real world problems, multi-
goal positions are more often the case. In this work, we
propose a Rapidly Exploring Random Search Explorer (RESE)
algorithm, that works for multi-goal scenarios. RESE generates
connection mediators, called witness nodes, within a radial
distance from a configuration in the graph, to make feasible
connections. RESE exploits the ideas from Rapidly-exploring
Random Graphs (RRGs) and includes a Q-learning technique
to help track witness nodes of successful trajectories while also
attempting connections in narrow regions by considering mul-
tiple directions. We test RESE in three different scenarios:(1)
where the robot has to move from a single start to a single
goal position, (2) a single start to multiple goal positions and
(3) multiple start from any random position to multiple goal
positions. Our results show RESE quickly finds a solution in
multi-goal experiments and performs comparably well in single
goal experiments compared to other existing motion planning
methods.

I. INTRODUCTION

Motion planning algorithms exist that solve a varying
number of tasks e.g., character animation for games and
movies, virtual prototyping and search and rescue missions
[7], [24], deformable robots [12], [23], [26], and manip-
ulation planning [16]. Sampling Based Motion Planning
methods (SBMP) [8] are one of the widely used [families
of] motion planning algorithms because they are known to
be probabilistic complete i.e., if a solution path exists, the
probability of finding that solution increases as the number
of samples tends towards infinity. Sampling-based methods
are broadly classified into two main classes: roadmap or
tree/graph-based methods such as the Probabilistic Roadmap
Method (PRM) [18] and tree-based methods such as Rapidly
exploring Random Tree (RRT) [19]. RRT’s and its’ variants
[25], [29], [30] have been successful in planning single query
trajectory but are not tailored towards multiple start and
goal positions. This finds applicability in situations where
more than one robot has to be deployed to successfully
complete a mission e.g, space exploration or search and
rescue operations. When robots are deployed for example
during search and rescue, there is a need to monitor their
locations, communication accessibility and their ability to
adapt to changes they might encounter not planned before
going in for the mission. Time utilization and planning is
very important in these situations or else the consequence
could be disastrous. In this work we implement a new SBMP
algorithm called Rapidly Exploring Random Search Explorer
(RESE), that aims to address the challenge of planning in
areas where robots are deployed to any unknown position and

A.Upadhyay, C.Ekenna are with the Department of Computer
Science, University at Albany, New York, 12222, USA.
{aupadhyay,cekenna}@albany.edu

requires to reach goal positions from there, in a multi-goal
environment. Our method considers random start state repre-
sentations in addition to having the ability to perform multi-
goal planning. RESE differs from RRT algorithms because
it builds a graph of trees, similar to the Rapidly exploring
random graphs (RRG) algorithm [17]. RESE however creates
witness nodes and incrementally builds a graph of trees based
on how important the witness node is in reducing the number
of separate connected components in the graph. We use a
reward and cost approach (i.e. reinforcement learning) to up-
date and monitor the performance of the witness node based
on successfully formed connections between two random
nodes. Witness nodes are created within a determined radius
area act as a connection mediator between two configurations
added to the roadmap. We perform experiments using 3 test
cases, i.e. single query, multi query and random multi query.
The first case considers path planning from a single start to a
single goal position, the second case considers a single start
to the multiple goal positions and last case considers multiple
start from any random position to the multiple goal positions.
We perform experiments in a variety of environments and
compare with existing PRM, RRT and it’s variants. Our
results show that in the multi query and random multi query
experiments RESE outperforms other methods and performs
comparably well in the single query experiments.

II. RELATED WORK

In this section, we define important preliminaries of mo-
tion planning and describe relevant related work.

A. Motion Planning Primitives

The motion planning problem involves finding a valid path
(e.g., collision-free and satisfying all joint limit and/or loop
closure constraints) for a movable object starting from its
start configuration to a goal configuration in an environment
[8]. A single configuration is defined based on the movable
object’s d independent parameters or DOFs (degrees of
freedom).

A robot is a movable object whose position and orientation
can be described by n parameters, or degrees of freedom
(DOFs), each corresponding to an object component (e.g.,
object positions, object orientations, link angles, link dis-
placements). Hence, a robot’s placement, or configuration,
can be uniquely described by a point (x1, x2, ..., xn) in a n
dimensional space (xi being the ith DOF). This space con-
sisting of all possible robot configurations (feasible or not)
is called a configuration space (C-Space) [21]. The subset of
all feasible configurations is the free space (C-free), while
the union of the unfeasible configurations is the blocked
or obstacle space (C-Obstacle). Thus, the motion planning

problem becomes that of finding a continuous trajectory in
C-free connecting start and goal pair of configurations.

The general motion planning problem of trying to find
a collision-free path from some starting state to some goal
region has been extensively studied. In particular, sampling-
based techniques have received much attention over the
last 15 years. The Rapidly-exploring Random Tree (RRT)
operates by growing a tree in state space, iteratively sampling
new states and then steering the existing node in the tree that
is closest to each new sample towards that sample. The RRT
has many useful properties including probabilistic complete-
ness and exponential decay of the probability of failure with
the number of samples [20]. The Rapidly-exploring Random
Graph (RRG) is an extension of the RRT algorithm [17].
In addition to the nearest connection, new samples are also
connected to every node within some connected component.
The result is a connected graph that not only rapidly explores
the state space, but also is locally refined with each added
sample. This continuing refinement ensures that with infinite
samples, the RRG contains all possible paths through the
environment that can be generated by the steering function
used to connect samples.

Previous work [28] looked into improving local planning
paths by developing a method that uses poisson point process
to sample the points in a given configuration and can be ap-
plicable to PRM methods such as RRG, FMT (Fast Marching
Tree) [15] and BTT (bottleneck tree) [27]. A similar work
was also presented in paper [9] where authors proposed a
new local planning method, that increases the connectiv-
ity of the roadmap by extending simple one-dimensional
interpolation methods such as the straight-line methods to
a two-dimensional subspace of the total planning space.
The local planner degrades performance during execution in
complex environments due to high collision detection calls
and unreachable samples.

Methods like PRM* and RRT* in [17], has shown that
PRM methods can be asymptotically optimal i.e. the cost of
the returned solution converges almost surely to the optimum,
which hinges on connections between stochastic sampling-
based path planning algorithms and the theory of random
geometric graphs. But in practice, it requires many iterations
for samplers to produce an optimal solution.

B. Some RRT Variants

Many enhancements has been made in the past for RRT
algorithms in order to comply with the desired applications
of these algorithms in a given environment. [4] compares and
improves on the RRT* and the PRM* algorithms using a new
incremental sampling based motion planning algorithm based
on Rapidly-exploring Random Graphs (RRG), denoted by
RRT‡‡ (RRT sharp), which guarantees asymptotic optimality
and ensures that the constructed spanning tree rooted at the
initial state contains lowest-cost path information for vertices
which have the potential to be part of the optimal solution.

Another RRT variant described in [3] called CL-RRT‡‡,
generates trajectories using closed-loop prediction. They plan
with closed-loop prediction which allows for the handling
of complex unstable dynamics and avoids the need to find

computationally hard steering procedures. CL-RRT‡‡ algo-
rithm finds two types of neighbors, one using euclidean
distance and another with radial distance. A RRT variant in
[5] explores a different class of dynamic programming algo-
rithms for solving shortest-path problems on random graphs
generated by iterative sampling methods. It improves the
rewiring step in RRT‡‡ algorithm, the policy improvement
during the rewiring step is performed not only locally but
rather on a set of vertices that are classified as promising
during the current iteration.

To ameliorate the performance of RRT methods on dy-
namically changing regions in a given workspace, Yershova
et. al. in [30] proposed a sampling framework, Dynamic-
Domain RRTs, which grows voronoi based regions in the
dynamic environment. It biases the random node selection
to be within a radius r of qnear or expansion will not occur.
The radius is dynamically determined from failed expansion
attempts. On improving in this approach, Denny et. al. in [11]
proposed Dynamic Region-biased RRT, that biases growth
based on dynamically moving regions using reeb graphs. The
algorithm captures the workspace topology by dynamically
moving sampling regions along an embedded graph and
works well for holonomic problems but fails to perform in
non-holonomic problems.

In these research works, variants of RRT or RRT itself, are
designed to find an optimal solution during path planning
or to work in dynamic environments, etc. However, the
implementation of these methods is restricted to solving a
single goal problem and are not tailored towards solving a
multi-goal problem. RESE overcome the restriction of these
methods to solve for a multi-goal problem by using the
witness nodes that help in making connections in diverse
directions during connection and path generation phase.

C. SBMP Algorithms for Search and Rescue

One application of multi-robots is carrying out search and
rescue missions while using robots with different capabilities.
Consider a search and rescue scenario where a team of
ground robots and UAVs are deployed, path planning for this
team of robots will be difficult when you consider different
constraints in these robots.

The paper [14] proposes Rapidly-exploring Information
Gathering (RIG) algorithm that extends ideas from Rapidly-
exploring Random Graphs (RRGs) and combines them with
branch and bound techniques to achieve efficient optimiza-
tion of information gathering while also allowing for op-
eration in continuous space with motion constraints without
knowing the goal position. The goal is to find a trajectory that
maximizes an information metric (e.g., variance reduction,
information gain, or mutual information) and also falls within
a pre-specified budget constraint (e.g., fuel, energy, or time).
Work in [6] had reduced the time needed to plan paths by
25 percent. The heterogeneous team of robots was divided
into homogeneous groups of robots and an online planning
method was applied where the plan of each group is updated
iteratively with each new information.

Both search and rescue operations are complex opti-
mization problems and it gets more complicated within an

uncertain domain. In an unknown domain, the findings of
the first search robot can significantly change the planning
of other robots following its lead.

III. RESE ALGORITHM

A. Problem description

In this work, we define the problem of motion planning for
multiple goals based on maximizing the number of witness
nodes in the region to find the shortest path to reach these
goals.

d(xrand, w) = θ, r/2 ≤ θ ≤ 2r. (1)

Equation (1) defines w as a witness node, xrand as a random
configuration point, r as radial distance, d() as euclidean
distance function and θ as the constant distance which lies
between r/2 and 2r. We define witness nodes as potential
intermediate vertices/nodes in the configuration space that
help in making a connection between any two sampled
configuration points in the space. These witness nodes are
workspace points that are not configuration points and van-
ishes from the C − Space after the successful connection is
made. Blocked nodes are considered as the nodes that are not
able to make a connection with other neighboring nodes in a
particular direction in space towards which path is expanding
to reach the goal. Our algorithm presented in this paper tries
to connect blocked nodes to a reachable node in the region by
generating witness node at distance θ in different directions
from the blocked node.

During the connection phase, RESE utilizes the capa-
bilities of witness node to generate feasible paths towards
multiple goal positions. RESE generates maximum witness
nodes for a current node within a distance θ and these witness
nodes throw random rays to make a connection with the
new node. From the generated witness nodes, RESE selects
the witness node that is capable of making a connection
to new node from a current node. Witness node steers
the connection between random node xrand and new node
xnew by expanding to possible maximum distance. Every
time a new witness node wnew is added to the witness
vertex set M due to a successful expansion, connections
are attempted from all other vertices in the graph through
a witness node that is within a ball of radius r for new node
xnew. The algorithm attempts to connect nodes in narrow
regions (during expansion) by diverging directions to expand
from a witness node in C-free space with time complexity
O(log n) where n is the blocked nodes. As seen in Figure
1, RESE connects the random nodes by producing witness
nodes within a radial distance θ from the current random
node. On successful connections between two random nodes,
a witness node is generated for a new potential node during
each iteration as the algorithm builds a path towards the goal.

B. Algorithm Description

Algorithm 1 initializes the values for a witness node and
new random node as it extends towards the target node from
the start node. The query is solved when the last goal is
connected to the graph. The reward of a witness node is
increased or decreased with respect to the success or failure

Fig. 1: The figure gives a pictorial view of RESE in a simple
environment. Random nodes are denoted by red dots, witness
nodes are purple dots and a green dot represents the goal.
Blue surfaces are C-Obstacle in the region and remaining
are C-free.

connection made between two nodes. The cost of a witness
node is updated based on the distance it extends from the
current random node to the new node using UpdateCost()
method. The RewardNode() method calculates the reward for
the witness node w as the success or failure in connecting a
current random node xrand to a new node xnew through it
for parameters in equation (1).

Algorithm 1 Expanding Graph using witness node

Input. Query Q, S be start configuration point, w be witness
node within radial distance r from S, qnew is a new
configuration point.

1: w ← GetWitnessPoint(S), qnew ← RandomCfg()
2: while Q is not solved and w 6= S do
3: if Connect(S, w, qnew) is true then
4: UpdateCost(w)
5: RewardNode(w)
6: S ← qnew
7: qnew ← RandomCfg()
8: w ← GetWitnessPoint(S)
9: else

10: wnew ← GetWitnessPoint(S)
11: w ← wnew
12: end if
13: end while

On each iteration, once the connection between the current
random node and the new node is made, the newly connected
node becomes the source to make a connection with other
nodes in the C −Space, in order to reach either of the goal
node. RandomCfg() method outputs a new node on each call
that is close to goal node and lies in C-free.

GetWitnessPoint(), i.e. Algorithm 2, selects the best near-
est witness node within the radial distance r from the current
random node. The current random node is taken as the center
of the circle from where a witness node is selected within
the radial distance to the current node, from set M iteratively,
where M is the set of maximum witness nodes generated
within the ball of radius r for the current node. The algorithm
returns a potential witness node for the current random node,

such that the witness node has not been visited before and
lies in C-free. Initially, the values of cost C = 0 and reward
R = 1 are given as input for a newly selected witness node.

Algorithm 2 Updating nearest witness node

Input. Configuration points w1 and q1 where w1 6= q1,
radial distance r, cost parameter C, reward parameter
R and an ordered set of cost/reward for witness nodes
M = 〈(w1, C1, R1), (w2, C2, R2),, (wk, Ck, Rk)〉.

1: Initialize: C ← 0, R ← 1, r ← 1.0
2: while w1 in radius(q1, r) or dmax(w1, q1) ≥ r do
3: if w1 is collision free then
4: Update M(w1, C, R)
5: end if
6: if ¬visited(w1) then
7: return w1

8: end if
w1 ← RadialRandomCfg(q1)

9: end while

In Algorithm 2, q1 is the current random node for which
a witness point w1 is selected on meeting conditions from
set M. RadialRandomCfg() method selects another nearest
witness node for the current random node from set M on
each call such that the witness node is unvisited. A cost-
insensitive probability P is defined for each witness node,

P (wh) = (1− κ)
log(Rh + 1)

ΣSm=0log(Rm + 1)
+
κ

τ
(2)

where κ ∈ [0, 1] is a fixed constant describing a learning
factor on probability derived from a uniform distribution over
the region for witness node set M and τ is defined as the
size of witness node set and Rh is the reward parameter for
witness node wh in the set at index h. Cost is taken into
account when defining the probability P ∗

P ∗(wh) =
P (wh)/Ch

ΣSm=0P
∗(wm)/Cm

(3)

where this fraction is a cost-insensitive probability/cost ratio
of witness node wh compared to the total cost-insensitive
probability/cost ratios of other witness nodes. Ch is updated
during execution to keep track of the cost a witness node
incurs in relation to the others. Finally, the reward is updated
based upon a distance witness node covers to connect a new
node xnew, i.e. rh, we apply the following formula

Rh = Rhe
κ

rh
P (wh)∗S (4)

where rh = 0, if the witness node fails to connect the new
node xnew in the C-free space.

IV. EXPERIMENTAL SETUP

All methods were implemented in a C++ motion plan-
ning library developed by the Parasol Lab at Texas A&M
University [1]. All experiments for each environment are
averaged over 10 runs with different random seeds and
were executed on a Dell Optiplex 7040 desktop machine
running OpenSUSE operating system. The PRM methods use

Obstacle based motion planning method (OBPRM) [2], all
methods use euclidean distance metric, brute force K-Closest
nearest neighbor technique [22] and the RAPID collision
detection library [13].

We perform experiments on four different environments,
considering single and multi-goal scenarios for a single robot
in the environment as shown in Figure 2.
• House 3D: This environment is a 3D representation of

a house where the robot is in the shape of a table which
has to be moved from one room to another. There are
four rooms in the house with each room having just one
door to enter as shown in Figure 2a. In the first criteria,
this environment is set to have just one start position of
the table and one end position in another room which
does not have a direct entry from the start position. In
the second criteria, the environment has multiple goal
positions where the table has to reach each room that
has at least one goal position.

• Heterogeneous 3D: This environment is a 3D maze
kind of structure with narrow passages between the
walls. The robot has to pass through the tunnels to reach
its goal(s) as shown in Figure 2b. In case of a single
goal, the start and goal positions are kept separated by
multiple walls and two tunnels. In case of multiple goal
scenario, the goals are kept in intermediate places where
the robot has to either pass through a hole in the wall
or a tunnel to reach from start to goal.

• KukaYouBot: In this environment, an 8 DOF robot has
been placed. The environment contains four rooms as
shown in Figure 2c. The base of the robot has 5 DOFs
that allow it to move forward. In a single goal scenario,
the robot moves through narrow passages and arrives
at a destination where it has to perform some action,
like grasping or putting an object down. In a multi-goal
scenario, the robot will perform the same task but at
multiple destinations.

• Helico: In this environment, the robot is a helicopter that
has to traverse through many obstacles like short and
tall buildings and narrow passages between obstacles
as shown in Figure 2d. The robot might have to change
its vertical position to reach some goals. In a multi-
goal scenario, the different goal locations have been
kept at different heights from ground level to make it
more complicated to solve.

V. EXPERIMENTAL RESULTS

In this section, we discuss our approach and results with
RRT, AdaptiveRRT [10], DynamicDomainRRT and RRG
algorithms for single query experiments, and PRM and RRG
for multi query experiments.

A. Single Query Experiments

RESE was compared with RRT, AdaptiveRRT, Dynamic-
DomainRRT and RRG algorithms using a single start and
single goal scenario in the environments. The aim of this
experiment is to compare the performance of RESE in terms
of time to solve the query as shown in Figure 3b and the
number of nodes generated as shown in Figure 3a. The

(a) House 3D (table) (b) Heterogeneous 3D (toroidal plus)

(c) KukaYouBot (8 DOFs robot) (d) Helico (helicopter)

Fig. 2: Heterogeneous Environments Studied

results show that RESE performs equivalent to RRG in
KukaYouBot, Helico, and 3D Heterogeneous environments
but not so well in House3D environment. Our results show
during the multi-query environments that RESE is better
suited for multi query scenarios due to the extra computation
of witness nodes that enables RESE to solve quickly towards
the nearest goal.

B. Multi Query Experiments

We compare RESE with PRM and RRG algorithms for the
multi-query scenario where multiple goal states are defined
in the environment and the aim is to reach all these states.
Other previously defined methods do not consider multi goal
states and so will not be considered in this experiment. We
consider 5 multi goal positions placed at different positions
in the environment. We consider a time cap of 24 hrs for all
the methods to reach all the goal states successfully.

Table I and II give a summary of our results. RESE com-
pletes the queries in all the environments and out performs all
the other methods in terms of time needed to solve the query
and number of nodes needed. BasicPRM fails to complete in
KukaYouBot and 3D Heterogeneous environments whereas
it poorly performs in House3D and Helico environments
compared to RRG and RESE algorithms. Except in House3D
environment, RRG failed to complete execution of all seeds
for other environments. These seeds randomize the place-
ment of nodes during execution of any sampling based
motion planning algorithm. The inability of PRM and RRG
to successfully complete all the seeds shows its incapability
to adapt to unfavorable regions whereas RESE completes
executing for all seeds in all the four environments. Here,
DNF stands for ”Did Not Finish”.

C. Random Multi-Query Experiments

Previously discussed and compared algorithms solve for
single query problems or predefined multi query problems.

In real-time applications such as search and rescue scenarios,
having random goal positions (as in the case of sporadically
falling debris which causes the goal positions to change
continuously making the environment dynamic) is impor-
tant. We simulate this scenario by generating random goal
positions during the roadmap construction and the algorithm
automatically terminates on reaching all the goal positions
successfully.

Table III and IV shows the performance of RESE across
all experiments performed. This result shows that the random
multi query experiments incur little overhead compared to
the other experiments and in some cases, outperforms the
single and multi query experiments as is the case for 3D
Heterogeneous environment and 0.34 seconds slower than
the single query experiments for the Helico environment.
This shows intuitively how RESE will perform in a more
dynamic environment (little overhead, adapt to changes in
the environment) which we plan to explore in a future work.

VI. CONCLUSION

In this paper we have presented a new graph-based
algorithm, RESE (Rapidly Exploring random Search Ex-
plorer), that plans the path from start to goal on making
the connection between nodes through witness nodes and
uses reinforcement learning approach to trace the successful
witness nodes in the environment. RESE also attempts to
connect blocked nodes in the narrow region by fostering
witness nodes in different directions for connection. The
algorithm has shown the capability to work well in multi-
query environments by building paths from a fixed start
or random start to the multiple goal positions. For future
work, the algorithm will be further modified to test in better
dynamic environments and will be integrated into a real-time
robot for search and rescue scenarios.

(a) Single Query Nodes (b) Single Query Time (in seconds)

Fig. 3

KukaYouBot House 3D Helico Heterogeneous 3D
PRM DNF 2748.60 1692.60 DNF
RRG DNF 2736.10 DNF DNF
RESE 6314.10 2182.50 773.80 28251.90

TABLE I: Nodes Generated in MultiQuery environement

KukaYouBot House 3D Helico Heterogeneous 3D
PRM DNF 363.32 49.02 DNF
RRG DNF 82.99 DNF DNF
RESE 564.93 52.72 12.43 2210.77

TABLE II: Total time in MultiQuery environement

RESE KukaYouBot House 3D Helico Heterogeneous 3D
Single query 7655.5 5987.3 654.1 27813.1
Multi-query 6314.1 2182.5 773.8 28251.9

Random multi-query 6314.1 5987.3 675.2 28251.9

TABLE III: Nodes Generated

RESE KukaYouBot House 3D Helico Heterogeneous 3D
Single query 450.7268 20.780873 4.624302 4474.5712
Multi-query 564.9383 52.721571 12.435526 2210.7718

Random multi-query 612.4274 66.72147 4.964374 2044.222

TABLE IV: Total Time taken

REFERENCES

[1] N. M. Amato. Motion planning benchmarks.
http://parasol.tamu.edu/groups/amatogroup/benchmarks/.

[2] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo.
OBPRM: an obstacle-based PRM for 3d workspaces. In Proceedings
of the third Workshop on the Algorithmic Foundations of Robotics,
pages 155–168, Natick, MA, USA, 1998. A. K. Peters, Ltd. (WAFR
‘98).

[3] O. Arslan, K. Berntorp, and P. Tsiotras. Sampling-based algorithms for
optimal motion planning using closed-loop prediction. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pages
4991–4996. IEEE, 2017.

[4] O. Arslan and P. Tsiotras. Use of relaxation methods in sampling-based
algorithms for optimal motion planning. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pages 2421–2428.
IEEE, 2013.

[5] O. Arslan and P. Tsiotras. Incremental sampling-based motion planners

using policy iteration methods. In Decision and Control (CDC), 2016
IEEE 55th Conference on, pages 5004–5009. IEEE, 2016.

[6] Z. Beck, L. Teacy, A. Rogers, and N. R. Jennings. Online planning
for collaborative search and rescue by heterogeneous robot teams. In
Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, AAMAS ’16, pages 1024–1033,
Richland, SC, 2016. International Foundation for Autonomous Agents
and Multiagent Systems.

[7] S.-Y. Chien, H. Wang, and M. Lewis. Human vs. algorithmic path
planning for search and rescue by robot teams. In Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, volume 54,
pages 379–383. Sage Publications Sage CA: Los Angeles, CA, 2010.

[8] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, June
2005.

[9] J. Denny and N. M. Amato. The toggle local planner for sampling-
based motion planning. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 1779–1786. IEEE, 2012.

[10] J. Denny, M. Morales, S. Rodriguez, and N. M. Amato. Adapting
rrt growth for heterogeneous environments. In Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on, pages
1772–1778. IEEE, 2013.

[11] J. Denny, R. Sandström, A. Bregger, and N. M. Amato. Dynamic
region-biased rapidly-exploring random trees. In Twelfth International
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2016.

[12] R. Gayle, M. C. Lin, and D. Manocha. Constraint-based motion
planning of deformable robots. In Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), pages 1046–1053, April 2005.

[13] S. Gottschalk, M. Lin, and D. Manocha. Obb-tree: A hierarchical
structure for rapid interference detection. Technical Report TR96-013,
University of N. Carolina, Chapel Hill, CA, 1996.

[14] G. A. Hollinger and G. S. Sukhatme. Sampling-based motion planning
for robotic information gathering. In Robotics: Science and Systems,
volume 3. Citeseer, 2013.

[15] L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast marching
tree: A fast marching sampling-based method for optimal motion
planning in many dimensions. The International journal of robotics
research, 34(7):883–921, 2015.

[16] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning
collision-free reaching motion for interactive object manipulation and
grasping. Computer Graphics Forum, 22(3):313–322, Sept. 2003.

[17] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research,
30(7):846–894, 2011.

[18] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans. Robot. Automat., 12(4):566–580, August 1996.

[19] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 473–479, 1999.

[20] S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning.
The international journal of robotics research, 20(5):378–400, 2001.

[21] T. Lozano-Perez. Spatial planning: A configuration space approach.
Computers, IEEE Transactions on, 100(2):108–120, 1983.

[22] T. McMahon, S. Jacobs, B. Boyd, L. Tapia, and N. M. Amato. Evalu-
ation of the k-closest neighbor selection strategy for prm construction.
Technical Report TR12-002, Texas A&M, College Station Tx., 2011.

[23] T. Morita, J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi. Knot
planning from observation. In Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), volume 3, pages 3887–3892, sept. 2003.

[24] R. R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset,
and A. M. Erkmen. Search and Rescue Robotics, pages 1151–1173.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[25] C. A. Rodriguez, J. Denny, S. A. Jacobs, S. Thomas, and N. M. Amato.
Blind RRT: A probabilistically complete, distributed RRT. Technical
Report TR13-004, Parasol Lab, Dept. of Computer Science, Texas
A&M University, Apr 2013.

[26] S. Rodriguez, J.-M. Lien, and N. M. Amato. Planning motion in
completely deformable environments. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), pages 2466–2471, May 2006.

[27] K. Solovey and D. Halperin. Efficient sampling-based bottleneck
pathfinding over cost maps. arXiv preprint arXiv:1608.00261, 2016.

[28] K. Solovey and M. Kleinbort. The critical radius in sampling-based
motion planning. arXiv preprint arXiv:1709.06290, 2017.

[29] C. Suh, B. Kim, and F. C. Park. The tangent bundle RRT algorithms for
constrained motion planning. In 13th World Congress in Mechanism
and Machine Science, 2011.

[30] A. Yershova, L. Jaillet, T. Simeon, and S. M. Lavalle. Dynamic-
domain RRTs: Efficient exploration by controlling the sampling do-
main. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 3856–

3861, April 2005.

