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Abstract— Collision checking in motion planning is expensive,
requiring lazy motion planning algorithms to explicitly reason
about when edges should be evaluated. These algorithms defer
collision-checking an edge until that edge is potentially along the
optimal path. However, they often do not consider correlations
between edge collision statuses. We present Edge-Collision
Conditional Variational Auto-encoder (EC-CVAE), a model for
learning these correlations purely from data without guidance
from additional features (e.g. distance in task or configuration
space). As more edges are evaluated, EC-CVAE more accurately
predicts the collision statuses of the remaining edges. We
show empirically that combining EC-CVAE with a lazy motion
planning algorithm can reduce the number of edge evaluations
needed to compute the optimal path.

I. INTRODUCTION

To mitigate the bottleneck of collision checking, lazy mo-
tion planning algorithms defer collision evaluations between
two configurations until that edge is potentially along the
optimal path [3], [6], [7]. These planning algorithms maintain
two sets of edges: evaluated edges (either VALID or INVALID)
and unevaluated edges (optimistically assumed to be VALID).
When deciding between several unevaluated candidate edges,
edge-evaluation heuristics can focus collision checks on
edges that have high probability of collision and quickly
invalidate them.

Our key insight is that edge labels are highly correlated,
enabling few edge evaluations to provide information about
many edges. In addition, obstacles in real-world environ-
ments are rarely randomly placed: they often have some
recurring structure that can be learned and exploited.

We model the validity of each edge as a Bernoulli random
variable. Naı̈vely estimating the conditional distributions for
all possible subsets of evaluated edges requires a table that
is exponential in the number of edges in the graph. Instead,
we train a conditional variational auto-encoder (CVAE) [13]
to efficiently predict these edge collision probabilities, con-
ditioned on the evaluated edge labels. This CVAE approach
combines two sources of data to inform these probability esti-
mates: online observations of edges that have been evaluated
in the current planning environment and offline examples of
similar planning environments where all edges in the graph
have been evaluated. Using the CVAE predictions as an edge-
evaluation heuristic enables a lazy motion planning algorithm
to quickly find the optimal path.
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Fig. 1: Progress of LazySP using the EC-CVAE selector (Section V-C).
Using EC-CVAE focuses expensive edge evaluations on edges that are likely
to be in collision (red), quickly allowing the lazy motion planning algorithm
to find the optimal path.

II. RELATED WORK

Deep generative models such as variational auto-encoders
(VAEs) [8] and generative adversarial networks (GANs) [5]
use the expressiveness of deep models to model complex
distributions of data. Deep conditional generative models
(e.g. conditional VAEs [13]) enable further control over the
sampled outputs by sampling from a different conditional
distribution depending on the values of the conditioned
variables. These approaches have been applied in tasks such
as synthesis of realistic images and speech.

Our problem of predicting edge collision probabilities
based on evaluated edge labels is similar to the problem of
image completion, where masked pixels of an image must
be recovered based on the remaining visible pixels. However,
many of these algorithms (e.g. [12], [13]) decide on a fixed
mask size to recover before training the network, making
them unsuitable for our problem setting where the number of
edges to predict varies. Other approaches based on modified
convolutions are capable of recovering irregular masks [9],
[14]. However, this cannot be directly applied to our problem;
since vertices and edges can be arbitrarily ordered, there may
be little correlation between a missing entry in the adjacency
matrix and its neighbors.

Several machine learning approaches have been proposed
to predict the validity of unevaluated edges. Esposito and
Wright [4] argue that the adjacency matrix for a roadmap
can be decomposed into the sum of a low-rank matrix and
a sparse error matrix, and propose a convex optimization
procedure to recover the unknown entries. This method
attempts to recover the edge validities for all edges between



any pair of vertices, while we assume that we only need
to recover a fixed subset of edges. Their optimization-
based approach cannot be used to sample different adjacency
matrices that are consistent with the evaluated edges. Pan
et al. [11] use point-to-point and line-to-point approximate
nearest-neighbor queries to efficiently perform probabilis-
tic collision checking for configurations and edges based
on previously evaluated configurations. This approach only
incorporates the validity of nearby points in configuration
space to predict edge validities; however, points that are
far apart in configuration space may still be informative,
e.g. if they are close in task space. Furthermore, neither of
these approaches can incorporate offline training examples
to improve predictions.

Planning with expensive collision-checking is a well-
studied problem in motion planning. We focus on the
paradigm of lazy motion planning, where an edge is only
evaluated if it is potentially along the optimal path. Lazy-
PRM* and Lazy-RRG* are asymptotically-optimal anytime
lazy motion planning algorithms which only evaluate an
edge if it would result in a shorter path [7]. The LazySP
class of algorithms continuously re-solve the shortest path
problem assuming that unevaluated edges are collision-free
while lazily eliminating edges as they are evaluated to
be in collision, replanning until the optimal collision-free
path is found [3]. Lazy Receding Horizon A* balances
the LazySP tradeoff between planning time and collision-
checking time [10]. These algorithms also do not incorporate
offline training examples to decide which edges to evaluate.

Several motion planning algorithms assume access to edge
collision probabilities. Haghtalab et al. bound the number of
edge evaluations of the LazySP class of algorithms in this
probabilistic setting and prove that LazySP is asymptotically
optimal [6]. POMP is an anytime motion planning algorithm
that leverages edge collision probabilities to quickly find a
collision-free path with few edge evaluations, then balances
path length and path collision probability to find shorter
paths [1]. The BISECT algorithm uses the framework of
Decision Region Determination to find a feasible path from a
library of paths, computing priors on edge collision probabil-
ities from offline training examples [2]. Our CVAE approach
provides an alternative for generating these probabilities, so
it is complementary to these algorithms.

III. PROBLEM STATEMENT

In the shortest path problem, we assume that we are given
a graph G = (V,E) in configuration space and desired start
and goal vertices vs, vg ∈ V . Traversing each edge e in
the graph incurs a cost of w(e). The optimal path from the
start to goal p∗(vs, vg) minimizes the total cost of edges
in the path. While the set of edges E is known and fixed,
we are only given a lower bound for each edge weight ŵ(e)
(e.g. Euclidean distance). The exact weight w(e) is unknown
until the edge is evaluated for collisions: a collision-free
edge has cost ŵ(e) and an edge in collision has infinite
cost. Since each edge evaluation is expensive, we wish to

Fig. 2: Example environments from the TwoWall training dataset. The left
figure is the graph that is shared by all environments in the dataset. Obstacles
(gray) are for visualization purposes only; their positions are not provided
as features to EC-CVAE.
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Fig. 3: Edge-Collision Conditional Variational Auto-encoder (EC-CVAE)
encoder and decoder models. The collision labels, observed bitmask, ob-
served statuses, and collision probabilities are all |E|-dimensional vectors,
where |E| is the number of edges in the graph.

find the optimal path while minimizing the number of edge
evaluations.

We build on the LazySP framework proposed by Dellin
and Srinivasa [3]. LazySP maintains an optimistic graph
where an edge is assumed to be collision-free (i.e. edge
weight is exactly ŵ(e)) until it has been evaluated to be
in collision. It computes the shortest path on the optimistic
graph, then selects an edge along this candidate path to
evaluate according to an edge-selector function. If an edge
along the candidate path is evaluated to be in collision, a
new candidate is proposed based on the updated optimistic
graph. If all edges along a candidate path are evaluated to
be collision-free, it is the optimal path p∗(vs, vg).

The choice of edge selector can have a drastic effect on
the number of edges that LazySP evaluates. Our goal is to
develop a selector that reduces edge evaluations by predicting
which edges are likely to be in collision, based on previously
evaluated edges.

While developing our data-informed selector, we assume
that there is a single explicit graph with a fixed list of edges,
which will be used for all environments. We assume that
there are example environments where all edges in the graph
have been collision-checked, which will be used as training
data for our selector. Different subsets of edges will be in
collision depending on the configuration of the obstacles in
each environment.

IV. EDGE-COLLISION CONDITIONAL VARIATIONAL
AUTO-ENCODER

Variational auto-encoders (VAEs) [8] encode high-
dimensional data x to parameters for a low-dimensional la-
tent random variable z, where the latent distribution is chosen
to be easy to sample from (e.g. N (0, I)). Samples from the



latent distribution are then decoded to reconstruct the original
data. To sample from the resulting generative model, samples
can be directly drawn from the chosen latent distribution
and decoded. The VAE objective function can be viewed
as minimizing the Kullback-Leibler divergence between the
variational and true posterior distribution. Computing this
divergence is intractable, but minimizing the divergence
is equivalent to maximizing the tractable Evidence Lower
Bound (ELBO). Conditional variational auto-encoders [13]
provide an additional variable o to both the encoder and
decoder networks, enabling the networks to learn different
conditional distributions for each o.

In this work, we describe our Edge-Collision Conditional
Variational Auto-encoder model (EC-CVAE) for predicting
edge collision probabilities based on learned correlations
with previously evaluated edges. The data to reconstruct
is the binary vector of ground-truth edge collision statuses
x ∈ R|E| where 1 is in collision and 0 is collision-free. The
observation o consists of the statuses of edges that have been
evaluated. This is represented as two vectors in R|E|: a binary
vector that indicates whether each edge has been evaluated,
and a vector of statuses (1 for collision, 0 for collision-free,
and 0.5 for unevaluated).

We believe this model will scale effectively to graphs in
higher-dimensional configuration spaces since the network
size is defined by the number of edges. In Section V-B, we
show that EC-CVAE (Fig. 3) naturally learns correlations be-
tween edge collision statuses without any additional features
(e.g. task or configuration space distance).

V. EXPERIMENTS

We evaluate EC-CVAE by considering a variety of 2D
geometric motion-planning problems [2]. We focus on these
simply for ease of visualization; our model depends on the
number of edges in the graph, not the dimension of the
configuration space.

A. Experimental Setup

Both the encoder and decoder network in EC-CVAE have
two fully-connected layers of 256 hidden units. We selected
a latent dimensionality of 10 by comparing the ELBO
of different latent dimensionalities on the validation set,
averaged over 3 random seeds. Each EC-CVAE model was
trained for 100 epochs.1 In one epoch, we sample an edge
observation probability (uniformly between 0 and 1) for each
environment in the training dataset. Each edge is observed
independently according to that probability to generate the
observation o that is passed into the network.

B. Reconstructions and Samples

In Table I, we compare the reconstruction performance of
EC-CVAE on five 2D geometric motion-planning datasets
from Choudhury et al. [2] with 1% and 5% of edges eval-
uated. However, since there may be many possible samples

1 Training on a 2017 MacBook Pro (2.3 GHz Intel Core i5 processor, 8
GB of memory) takes 3 minutes for the OneWall environment and 6 minutes
for the TwoWall environment.

Dataset % Evaluated Norm. Loss % Incorrect

OneWall 1% 0.256± 0.006 12.3%
|E| = 923 5% 0.228± 0.006 10.5%

TwoWall 1% 0.111± 0.005 4.2%
|E| = 2524 5% 0.097± 0.005 3.7%

Forest 1% 0.391± 0.005 18.8%
|E| = 2524 5% 0.345± 0.004 15.9%

SolidOneWall 1% 0.059± 0.002 2.3%
|E| = 1689 5% 0.056± 0.002 2.1%

SolidTwoWall 1% 0.051± 0.002 2.3%
|E| = 1689 5% 0.046± 0.002 2.0%

TABLE I: Reconstruction performance of environments in the test set when
1% and 5% of edges have been evaluated. The reconstruction error is
the average binary cross-entropy loss between the predicted edge collision
probabilities and ground-truth edge collision statuses. Losses are normalized
by the number of edges in the graph. Percent incorrect when edge collision
probabilities are rounded to 0 or 1 and compared to the ground truth labels.

Selector
Offline Online

Examples Observations

FORWARD

PRIOR X

EC-CVAE X X

TABLE II: Comparison of data considered by each selector. PRIOR uses
offline examples to empirically estimate collision probabilities. EC-CVAE
trains the model on offline examples and generates samples based on online
observations.

that are consistent with the observed edge labels (e.g. when
no edges have been evaluated), it may be impossible to
recover the exact edge collision probabilities. As a result,
this is only a proxy for EC-CVAE performance.

We visualize EC-CVAE samples for the TwoWall dataset
with 1% of edges evaluated in Fig. 4. The samples are not
perfect: edges that have already been evaluated to be in
collision can be predicted to be collision-free and vice versa.
However, they do capture some correlations between edges.
For example, middle edges through the right wall are usually
predicted to be in collision or collision-free as a group. In
the top row of samples, since some of those edges have
already been evaluated to be in collision, the group is usually
predicted to be in collision.

C. Planning Results

To evaluate whether EC-CVAE reduces the number of
edges evaluated by LazySP, we compare the performance of
three selectors on the TwoWall dataset (Fig. 5). The FOR-
WARD selector returns the unevaluated edge closest to the
beginning of the path. The PRIOR and EC-CVAE selectors
return the edge with the highest probability of collision;
PRIOR chooses based on the prior probability that each
edge is in collision, while EC-CVAE updates its probability
predictions as edges are evaluated.2

2PRIOR is similar to the MAXTALLY selector proposed by Choudhury et
al. [2].



Fig. 4: EC-CVAE samples for the TwoWall dataset when 1% of edges have been evaluated. Column 1 visualizes the collision statuses of evaluated edges
(VALID in blue, INVALID in red). Columns 2-4 visualize EC-CVAE samples, where darker edge lines mean that EC-CVAE is more confident that the edge
is collision-free. EC-CVAE learns some interesting correlations between edges: middle edges through the right wall are usually predicted to be in collision
or collision-free as a group. In the top row of samples, since some of those edges have already been evaluated to be in collision, the group is usually
predicted to be in collision.

Fig. 5: Edge evaluation results for LazySP on different environments from
the TwoWall dataset. Results are ordered by increasing number of edge
evaluations performed by the FORWARD selector as a proxy for problem
difficulty.

On most environments in this dataset, the PRIOR and
EC-CVAE selectors perform comparably. However, on the
environments where FORWARD evaluates many edges, EC-
CVAE shows improved performance over PRIOR. Fig. 1
shows snapshots of the progress that the EC-CVAE selector
makes on one of those environments.

VI. DISCUSSION AND FUTURE WORK

We have presented an approach for learning a conditional
generative model for edge collision probabilities and lever-
aging that model to inform an edge-evaluation heuristic for
a lazy motion planning algorithm. The LazySP framework is
beneficial for focusing evaluation on current candidate paths,
but other motion planning algorithms that leverage black-box
edge collision probabilities will also find EC-CVAE useful.

In this work, we have focused on the setting of a single
graph that is used for many environments. Our current world
representation as a vector of edge collision statuses makes
it challenging for our learned model to generalize from the
original graph to different graphs in similar environments.
However, we believe that a similar generative approach with
a different world representation could make it easier to
leverage different graphs.

One major drawback with EC-CVAE and other CVAE-
based generative models is that evaluated edges are not hard
constraints on the output of the network: edges that have
already been evaluated to be valid may still be predicted
to be invalid and vice versa. One possible method for
addressing this is by having an asymmetric cost function
that penalizes reconstruction error on observed edges more
strongly than unobserved edges. In addition, sampling edge
collision probabilities from an EC-CVAE often results in
very similar samples.

In spite of these issues, however, CVAEs work surprisingly
well. We believe that the existing EC-CVAE model can be
combined with a more sophisticated edge selector strategy
in the LazySP framework to further reduce the number of
edges evaluated. For example, it is possible to efficiently
implement a selector that maximizes myopic value of in-
formation instead of edge collision probability. Furthermore,
we believe that EC-CVAE can scale effectively to higher-
dimensional configuration spaces since the network size is
defined by the number of edges in the graph. We will validate
these hypotheses and consider alternative generative models
in future work.
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