Machine Learning for Robot
Planning and Control

Byron Boots
Georgia Tech Robot Learning Lab

Georgia & Institute for Robotics
Tech| and Intelligent Machines



Georgia @ Institute for Robotics

Intelligent Robotics Tech || and Intelligent Machines

Human Expertise

Learning

Byron Boots — Machine Learning for Robot Planning and Control 2



Georgia A Institute for Robotics

Intelligent Robotics Tech

and Intelligent Machines

Human Expertise

Models Adaptive Control Learning

Byron Boots — Machine Learning for Robot Planning and Control 3



Georgia @ Institute for Robotics

Intelligent Robotics Tech | and Intelligent Machines

Human Expertise

Efficient Policy Search
via Imitation

Learning Models for
Planning & Control

Q Structured Policies .
for Robotics

Models Adaptive Control Learning

Byron Boots — Machine Learning for Robot Planning and Control 4



Georgia | Institute for Robotics

Learnin e A [eYe L= 5 Tech || and Intelligent Machines

Human Expertise

Efficient Policy Search
via Imitation

Learning Models for
Planning & Control

Q Structured Policies ‘
for Robotics

Models Adaptive Control Learning

Byron Boots — Machine Learning for Robot Planning and Control 5



Task: Aggressive Offroad Driving Tezh | and Intelligent Machines

Georgia A Institute for Robotics

with Panos Tsiotras, Evangelos Theordou, Jim Rehg




: . . ia | Insti :
Task: Aggressive Offroad Driving S | e oot Mo mes

(—]

steering throttle

Byron Boots — Machine Learning for Robot Planning and Control 7



Task: Aggressive Offroad Driving Ge‘%—;%ﬁ&2‘.?;‘}.‘,‘{‘2“?323°.\?.§§ﬁ§,es

Terrestrial Agility: Drive Faster Than Human Pilots, Don’t Crash!

The Al problem:
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: Motor
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Engineering may be useful...

* Perception: Difterential GPS and IMU give accurate outdoor position
to within a few centimeters

e State Estimation: Map computed from a GPS survey of the environment
* Assume a System Model: use Model Predictive Control (MPC) to generate actions

e MPC: Optimize an open loop control sequence, execute a small portion of

seqguence, re-optimize
- P rI\/Iodel Predictive ControI\

4 )
optimize
‘ > control plan
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Why is this hard? Ceqeth
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If you don't get the dynamics right... Ge%:,,;ﬁ&g‘:;‘}::f: igont Machines
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Model Predictive Control

* Model Predictive Control has a long history of successful applications

* Most methods are geared towards linear-quadratic systems with convex constraints.
We have nonlinear dynamics and non-convex costs/constraints

e Usually use a physics-based models, makes simplifications
and assumptions that may not be accurate

Can we learn a better model from data?

ontrol
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Neural Network Dynamics Tech ||and Intelligent Machines

e We assume general discrete-time nonlinear state-space dynamics: x¢11 = F(x¢, us)
* We assume that the state x is partitioned as x = (q, q)

* \WWe only need to learn a function f so that the full state transition is:

q: + q: At
a: + f(xe,u) At

e \We use fully connected networks with two hidden layers

MPC is often formulated for control-affine dynamics....

Information Theoretic MPC for Model-based Reinforcement Learning
[Williams, Wagener, Goldfain, Drews, Rehg, Boots, Theodorou; ICRA 2017]
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(sampling-based approach to optimal control)
Sample Trajectories
1.Sample and evaluate trajectories k<) .f%
2.Compute control update Sold Repet
Update Control Plan l(su Upew

3.Execute first control in sequence,

rece ive Sta te feed ba Ck Execute first control, receive state feedback.

4.Repeat, using the un-executed
portion of the previous control
sequence to warm-start the trajectory

MPPI is naturally parallelizable, can use GPU to execute up to150,000 trajectories per second

input layer
hidden layer 1 hidden layer 2
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Model Predictive Path Integral Control Ge%;%ﬁ@g‘:;'}:tt:..!‘;;.?fagﬂﬁﬁ.es

(sampling-based approach to optimal control)

2560, 2.5 second trajectories sampled
with cost-weighted average @ 60 Hz

input layer

hidden layer 1 hidden layer 2
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Learning Neural Network Dynamics ™ Fech | and intelligent Machines

arg mein Epepiore Z Ge — fo(ae, ue)l|5
|t _

/ \

Distribution of ¢, x,u induced Minimize NN prediction error
by the exploration policy

Execute Learned Policy Exploration Policy

\
No training data ~———
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Learning Neural Network Dynamics ™ Fech | and intelligent Machines

covariate shift: mismatch between training
and test distributions

a’rg meln E,Oexplore Z Hqt o f9($t7 ut)Hg |earn|ng
Lt _

...much more

6 complicated...

argmin £, Z|\(jt—f9($taut)”g
|t =
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Learning Neural Network Dynamics ““762¢h | and intelligent Machines

...much more
6

arg min &, Z 16 = folae, unll; complicated...
Lt -

Can view problem as a Game, reduce to Online Learning:

prT .
| el

|l
™

1\ N
—‘\ >
: ! E‘mb’-« .
\%& J Current H
- 4 Ypothesis

Player 1: Learner (dynamics)

=

Player 2: Optimal Controller
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Online Learning: Dataset Aggregation Tech |/ and Intelligent Machines

(—]

Collect Data New Data

Current

Exploration

Bg Policy »

solve with DAgger
(Follow The Regularized Leader)

[Ross & Bagnell, 2012] Add to Dataset

input layer
hidden layer 1 hidden layer 2

Attempt the Task
With MPPI 19

Retrain Model



Model Predictive Control Ge‘%&éﬁAz‘:;‘f:::..‘;;;.?fagﬂﬁﬁ.es

Example Training Run

The Initial dynamics model Is trained from human driving.
After each training phase, we augment the dataset with
the new data, and then retrain the model.

Neural network configuration: 6-32-32-4



Alnstltute for Robotics
and Intelligent Machines

Robustness oia

-’ - N &
2175 i
p v N
< B4
) RN S
- /4 4 ke Rt
NN E ey B te R
‘ : v o835 N b 5
- 40D v R b Y 2 '
Lt A R ORI Sk y - \
Y 54> ! ol COBNEER ; ot WAL S O 2 AW e
;!‘ S - X la 3 T R IS : A\ } _'-‘-‘,_;\Q" ) -‘ . |
- . ql i o —'.".: ,“——"{—-——:9-——- s ’ Q I OE ) |
- - L a \ 1
A % g2l 1!

| » DA
1 : k é\ v 20y ’0‘4
f - g “',,Q:‘FA_‘,V-_ A At H
B IO AN W
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, : )‘ ot

i e .
// M & ( ////( ‘ Wl/tl/// ///W// i / i e 1 (/(/ [ ( [ M, /7/ / [ /m(/ //////////(// T «f,,_ //

\Yy ?)4 y
\ \ “\\\\ Sy : \\ 3 . \ / 7 A 7, ‘ ) :
e \\\\&&\\X\N\\\W\\ ST \\‘\‘\\\\\\\\\\N\\\\\\\\\\\\\\\\\\\\\ MR " R U -— b
AR VR \ N W \\\ AR AR - ‘\ Res ‘\ ‘Q}MW




Georgia | Institute for Robotics

Imitation Learning Tech || and Intelligent Machines

Human Expertise

Efficient Policy Search
via Imitation

Learning Models for
Planning & Control

Q Structured Policies ‘
for Robotics

Models Adaptive Control Learning

Byron Boots — Machine Learning for Robot Planning and Control 22



ask: Aggressive Offroad Driving Ge‘-i-';éﬁ&2‘:&‘}:{2.?323%32‘&;%

@

With Visionl!!




Aggressive Offroad Driving...with VISION! Ge?.-'éz,iﬁm g Intolligont Mashines

. Fully connected
Deep Neural Network Policy mg(a¢|s:) wesispees T
®® I Steering
32 filters 392 filters @ @ RelLU -
RelLU RelLU — Linear

+

_ _

64 filters 64 filters ]

ReLU ReLU 128 filters 128 filters — ReLU \ €

RelLU RelLU

Flatten

RGB image
160x80x3

RelLU

~~— Fully connected
Max Max Fully connected
Conv Conv pooling Conv Conv  pooling Conv  Conv pooling -
3x3 3x3 2x2 3x3 3x3 2x2 3x3 3x3 ox2  Fully connected

train end-to-end somehow

4 ) a ) 4 )
Sensor Data |— Policy mo(as|se) — Motor

Commands
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Reinforcement Learning Tech
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Find a Policy: mg(at|st)

Objective: 6* = argminE,, Zc(st,at)

0
S

Distribution of trajectories Instantaneous state-action cost
(sequences of states and actions) (slow bad, crashing bad,
induced by my(a¢|st). lots of actuation bad)
4 ) 4 ) 4 )
Sensor Data |— Po|icy We(at|5t) — Comcr)r:;);ds
_ Y \_ _J _ Y
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Reinforcement Learning Tech
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RL Policy Gradient Methods [Williams 92]

VoJ(0) = Z Vo In(mg(at|st)) Q™ (s¢, at)]

t

00— aVeJ(0)

descending the gradient increases log-likelihood of actions that
result in low accumulated cost with respect to the current policy

4 ) 4 ) 4 N
' M

Sensor Data |— Po|icy We(at|5t) Com(r)r;c;);ds

_ Y \_ _J _ Y
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RL Policy Gradient Methods [Williams 92]

VoJ(0) = Z Vo In(mg(at|st)) Q™ (s¢, at)]
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Reinforcement Learning (RL
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Imitation Learning Tech

o Exploration under Expert Guidance

and Intelligent Machines

(—]

Random exploration
(e.g., epsilon greedy, stochastic policies)
Inefficient!

For robots: Costly! Dangerous!

(e.g., Imitation Learning)
More Efficient!

For robots: Safer!
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Imitation Learnin 9 Tech |/ and Intelligent Machines

We will view imitation learning as an online learning problem:

08,

R
-

&
2.Execute the policy and
Player 1: Learner
evaluate feedback on w

performance w.r.t. expert Player 2: Expert

3. Update the policy -

1.Initialize a policy

AggreVaTeD (Aggregate Values to Imitate)
[Sun, Venkatraman, Gordon, Boots, Bagnell; ICML 2017]
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AggreVaTeD: Roll-In, Roll-Out Geggia  Institute for Robotics
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Learner roll-in

= @
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Terminate at state s

(sampling states encountered
by current policy)

Sample action @ to getto s~ .
Expert roll-out 7

Estimate Q™ (s, a)

Want to adjust policy parameters to increase the (log) likelihood of actions
that result in low cost-to-go with respect to the expert.
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RL Policy Gradient slowly bootstrap policy to improve

Z Vo ln(mg(at|st))Q™ (s, at)) over itself via trial-and-error

U

- (many interactions)

Z {Ve In(mg(ar]5:))Q" (st at)} quickly learn to imitate expert policy
t AggreVaTeD (big step-sizes, few interactions)
(Imitation Learning)

Different implementation options for AggreVaTeD: e Natural Policy Gradient
* TRPO
* PPO
* Actor-Critic
* GAE

® cfcC.
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Imitation Learning (AggreVaTeD): Z {Ve 1H(7Te(&t18t))Q7T*(8t7at)
t

e |s IL actually better than RL?

Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction (ICML 2017)
with Wen Sun, Arun Venkatraman, Geoff Gordon, Drew Bagnell

® There exists an MDP for which IL requires exponentially fewer samples than RL
* For general MDPs, IL requires polynomially fewer samples than RL

* Does IL Converge?

Convergence of Value Aggregation for Imitation Learning (AISTATS 2018)
with Ching-An Cheng

* Convergence requires stability: small change in policy results in small change
to state distribution. We can enforce this.
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AggreVaTeD: Theory & Practice Tech || and Intelligent Machines

Imitation Learning (AggreVaTeD): Z {Ve 1H(7Te(at!8t))Q7T*(8t7at)
t

e How can we estimate Q" (s, a;) in practice?
Agile Off-Road Autonomous Driving Through End-to-End Deep Imitation Learning (RSS 2018)

with Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos Theodorou

e [t MPC expert, might get Q-function for free
* |f expert performance is stable, can estimate an upper bound on cost-to-go

e Can we combine IL and RL to improve over the Expert?

Truncated Horizon Policy Search: Combining Reinforcement Learning and Imitation Learning (ICLR 2018)
with Wen Sun, Drew Bagnell

Fast Policy Learning using Imitation and Reinforcement (UAI 2018)

with Ching-An Cheng, Xinyan Yan, Nolan Wagener

¢ Yes!
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Back to Ra cmg“ Tegcthand Intelligent Machines

Terrestrial Agility: Drive Faster Than Human Pilots, Don’t Crash!
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Imitation Learning: Experts Tech||
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Human >

optimize

Algorithm or System sl

on the fly
with More Resources
Data Estimation state ST Torqu
feedback first step

during training
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Training the Policy Gegrola | Institute for Aobotics o
e 1 S 1
| Learner | | Safety control |
| \ | | |
| | | ( ) |
| [ camera } | SR | RCtransmitter |
| + DNN polic ] ) ~
| Wheel speed POTEY ?' controller h}f '
| - i . | Run/Stop button | |
| |\ |

| |

sensor / )
. - = b
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| r D |
| IMU 1| state i I
| . : |
| GPS || estimator MPC |
' :
I

| dynamics cost |
| model function |
IL Expert |

Agile Off-Road Autonomous Driving Through End-to-End Deep Imitation Learning

[Pan, Cheng, Saigol, Lee, Yan, Theodorou, Boots; RSS 2018]
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How should a robot be parameterized? Ge-rech 'and Intelligent Machines

(—]

Fully connected
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WHAT ON
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How should a robot be parameterized?

RGB image
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Model Predictive Control

Can be parameterized: mechanical

models, neural networks, etc.
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MPC as a Generic Policy Class

Di

Georgia
Tech

[Amos, Sacks, Jiminez, Boots, Kolter; NIPS 2018]

Analytically differentiate through MPC
optimization to update parameters of
cost, dynamics, perception modules

Faster convergence, interpretable policy
parameterizati
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MPC as a Generic Pollcy Class Georgia&lnstitute for Robotics

Tech ||/ and Intelligent Machines

Differentiable MPC for End-to-end Planning and Control
[Amos, Sacks, Jiminez, Boots, Kolter; NIPS 2018]

Analytically differentiate through MPC a )
optimization to update parameters of .
cost, dynamics, perception modules Policy mo(a:|s)

r N N
Faster convergence, interpretable policy Cout -
parameterization runction T

Featured at PyTorch Developer Conference

| https://locuslab.github.io/mpc.pytorch/ ‘
Sens DI
- — inds
L ) L ) L ) L} L;;f‘::::} L )
_ T Y,
\_ J
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Yunpeng Pan  Ching-An Cheng Xinyan Yan Kamil Saigol Keuntaek Lee

Byron Boots — Machine Learning for Robot Planning and Control 47



Georgia | Institute for Robotics

Tech || and Intelligent Machines

Thanks!
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