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Georgia Tech Robot Learning Lab
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Task: Aggressive Offroad Driving
with Panos Tsiotras, Evangelos Theordou, Jim Rehg
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Terrestrial Agility: Drive Faster Than Human Pilots, Don’t Crash!

steering throttle

Task: Aggressive Offroad Driving
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Terrestrial Agility: Drive Faster Than Human Pilots, Don’t Crash!

Sensor Data
Motor 

Commandspolicy

The AI problem:

Task: Aggressive Offroad Driving
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Model Predictive Control

• Perception: Differential GPS and IMU give accurate outdoor position  
to within a few centimeters  

• State Estimation: Map computed from a GPS survey of the environment 

• Assume a System Model: use Model Predictive Control (MPC) to generate actions 

• MPC: Optimize an open loop control sequence, execute a small portion of 
sequence, re-optimize

Engineering may be useful…
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Why is this hard?
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If you don't get the dynamics right…
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Model Predictive Control

• Model Predictive Control has a long history of successful applications 

• Most methods are geared towards linear-quadratic systems with convex constraints. 
We have nonlinear dynamics and non-convex costs/constraints 

• Usually use a physics-based models, makes simplifications  
and assumptions that may not be accurate 

Can we learn a better model from data?
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• We assume general discrete-time nonlinear state-space dynamics:  

• We assume that the state    is partitioned as                  

• We only need to learn a function   so that the full state transition is:  
 
 

• We use fully connected networks with two hidden layers

xt+1 = F(xt,ut)

x

x = (q, q̇)

xt+1 = F(xt,ut) =


qt + q̇t�t

q̇t + f(xt,ut)�t

�
f

MPC is often formulated for control-affine dynamics…. 

Information Theoretic MPC for Model-based Reinforcement Learning 
[Williams, Wagener, Goldfain, Drews, Rehg, Boots, Theodorou; ICRA 2017]  

Neural Network Dynamics
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Model Predictive Path Integral Control

1.Sample and evaluate trajectories  

2.Compute control update  

3.Execute first control in sequence, 
receive state feedback 

4.Repeat, using the un-executed  
portion of the previous control 
sequence to warm-start the trajectory

(sampling-based approach to optimal control)

MPPI is naturally parallelizable, can use GPU to execute up to150,000 trajectories per second 
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Model Predictive Path Integral Control

(sampling-based approach to optimal control)

MPPI is naturally parallelizable, can use GPU to execute up to150,000 trajectories per second 

Byron Boots — Machine Learning for Robot Perception, Planning, and Control
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No training data

Execute Learned Policy Exploration Policy

argmin
✓

E⇢
explore

"
X

t

||q̈t � f✓(xt, ut)||22

#

Distribution of            induced  
by the exploration policy

q̈, x, u Minimize NN prediction error 

Learning Neural Network Dynamics
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covariate shift: mismatch between training  
and test distributions

argmin
✓

E⇢
explore

"
X

t

||q̈t � f✓(xt, ut)||22

#

learning

argmin
✓

E⇢✓

"
X

t

||q̈t � f✓(xt, ut)||22

#
…much more  
complicated…

Learning Neural Network Dynamics
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...

Current Hypothesis f
n

Player 1: Learner (dynamics)

!18

argmin
✓

E⇢✓

"
X

t

||q̈t � f✓(xt, ut)||22

#
…much more  
complicated…

Pick Loss  Ln

Player 2: Optimal Controller

Can view problem as a Game, reduce to Online Learning: 

Learning Neural Network Dynamics
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Attempt the Task 
With MPPI

solve with DAgger  
(Follow The Regularized Leader) 

[Ross & Bagnell, 2012]

!19

Online Learning: Dataset Aggregation

Exploration 
Policy

Current 
Policy

Collect Data New Data

Add to Dataset

Retrain Model
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Model Predictive Control
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Robustness
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Task: Aggressive Offroad Driving

With Vision!!
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Deep Neural Network Policy ⇡✓(at|st)

train end-to-end somehow

Sensor Data
Motor 

CommandsPolicy ⇡✓(at|st)

Aggressive Offroad Driving…with VISION!!
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✓⇤ = argmin
✓

E⇢✓

"
X

t

c(st, at)

#
Objective:

Find a Policy: ⇡✓(at|st)

Distribution of trajectories  
(sequences of states and actions) 

induced by               .⇡✓(at|st)

instantaneous state-action cost 
(slow bad, crashing bad, 

lots of actuation bad)

Sensor Data
Motor 

CommandsPolicy ⇡✓(at|st)

Reinforcement Learning
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RL Policy Gradient Methods [Williams 92]

X

t

[r✓ ln(⇡✓(at|st))Q⇡(st, at)]r✓J(✓) =
X

t

"
r✓ ln(⇡✓(at|st))

 
TX

t0=t

c(st0 , at0)

!#

descending the gradient increases log-likelihood of actions that  
result in low accumulated cost with respect to the current policy

✓  ✓ � ↵r✓J(✓)

Sensor Data
Motor 

CommandsPolicy ⇡✓(at|st)

Reinforcement Learning
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Reinforcement Learning (RL)

Trial and Error: exploration via (e.g.) a stochastic policy 
requires a huge number of interactions

This works for games and simulated tasks

X

t

[r✓ ln(⇡✓(at|st))Q⇡(st, at)]r✓J(✓) =
X

t

"
r✓ ln(⇡✓(at|st))

 
TX

t0=t

c(st0 , at0)

!#

RL Policy Gradient Methods [Williams 92]
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Reinforcement Learning (RL)
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Imitation Learning

Random exploration  
(e.g., epsilon greedy, stochastic policies)  

Inefficient! 
For robots: Costly! Dangerous!

Exploration under Expert Guidance 
(e.g., Imitation Learning) 

More Efficient! 

For robots: Safer!
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Imitation Learning

1.Initialize a policy 

2.Execute the policy and 

evaluate feedback on 

performance w.r.t. expert 

3. Update the policy

We will view imitation learning as an online learning problem:

AggreVaTeD (Aggregate Values to Imitate) 
[Sun, Venkatraman, Gordon, Boots, Bagnell; ICML 2017]

...
Current Hypothesis f

n

Player 1: Learner

Next Hypothesis f
n+1

Pick Loss  Ln+1

Pick Loss  Ln

Player 2: Expert
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AggreVaTeD: Roll-In, Roll-Out

Terminate at state s 
(sampling states encountered 

by current policy)

Sample action a to get to s’

Learner roll-in
⇡

Expert roll-out ⇡⇤

Q⇤(s, a)Estimate

Want to adjust policy parameters to increase the (log) likelihood of actions 
that result in low cost-to-go with respect to the expert.



Byron Boots — Machine Learning for Robot Planning and Control !33

AggreVaTeD

Different implementation options for AggreVaTeD: • Natural Policy Gradient   
• TRPO 
• PPO 
• Actor-Critic 
• GAE 
• etc.

RL Policy Gradient
X

t

[r✓ ln(⇡✓(at|st))Q⇡(st, at)]

slowly bootstrap policy to improve  
over itself via trial-and-error 

(many interactions)

AggreVaTeD 
(Imitation Learning)

X

t

h
r✓ ln(⇡✓(at|st))Q⇡⇤

(st, at)
i

quickly learn to imitate expert policy 
(big step-sizes, few interactions)
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AggreVaTeD: Theory & Practice

Imitation Learning (AggreVaTeD):
X

t

h
r✓ ln(⇡✓(at|st))Q⇡⇤

(st, at)
i

• Is IL actually better than RL?  
Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction (ICML 2017) 
with Wen Sun, Arun Venkatraman, Geoff Gordon, Drew Bagnell 

• There exists an MDP for which IL requires exponentially fewer samples than RL 
• For general MDPs, IL requires polynomially fewer samples than RL 

 

• Does IL Converge? 
Convergence of Value Aggregation for Imitation Learning (AISTATS 2018) 

   with Ching-An Cheng  

• Convergence requires stability: small change in policy results in small change 
to state distribution. We can enforce this.  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• Yes!

!35

AggreVaTeD: Theory & Practice

Imitation Learning (AggreVaTeD):
X

t

h
r✓ ln(⇡✓(at|st))Q⇡⇤

(st, at)
i

• How can we estimate                   in practice? 
Agile Off-Road Autonomous Driving Through End-to-End Deep Imitation Learning (RSS 2018) 
with Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos Theodorou  

• If MPC expert, might get Q-function for free 
• If expert performance is stable, can estimate an upper bound on cost-to-go 

• Can we combine IL and RL to improve over the Expert?  
Truncated Horizon Policy Search: Combining Reinforcement Learning and Imitation Learning (ICLR 2018) 

   with Wen Sun, Drew Bagnell 
  Fast Policy Learning using Imitation and Reinforcement (UAI 2018) 
   with Ching-An Cheng, Xinyan Yan, Nolan Wagener 

Q⇡⇤
(st, at)
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Back to Racing!!

Terrestrial Agility: Drive Faster Than Human Pilots, Don’t Crash!
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Training the Policy

MPC

Agile Off-Road Autonomous Driving Through End-to-End Deep Imitation Learning 
[Pan, Cheng, Saigol, Lee, Yan, Theodorou, Boots; RSS 2018]  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Results
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How should a robot be parameterized?
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Sensor Data
State 

Estimation
Planning Control

Motor 
Commands

Perception

How should a robot be parameterized?
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Model Predictive Control
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Model Predictive Control

Cost  
Function

Dynamics
Can be parameterized: mechanical  
models, neural networks, etc.
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Model Predictive Control

Cost  
Function

Dynamics

MPC as a Generic Policy Class

Policy ⇡✓(at|st)

Analytically differentiate through MPC 
optimization to update parameters of 
cost, dynamics, perception modules 

Faster convergence, interpretable policy 
parameterization

Differentiable MPC for End-to-end Planning and Control  
[Amos, Sacks, Jiminez, Boots, Kolter; NIPS 2018]
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Model Predictive Control

Cost  
Function

Dynamics

MPC as a Generic Policy Class

Policy ⇡✓(at|st)

Analytically differentiate through MPC 
optimization to update parameters of 
cost, dynamics, perception modules 

Faster convergence, interpretable policy 
parameterization

Differentiable MPC for End-to-end Planning and Control  
[Amos, Sacks, Jiminez, Boots, Kolter; NIPS 2018]

Featured at PyTorch Developer Conference 
https://locuslab.github.io/mpc.pytorch/
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Grady Williams Nolan Wagener Paul Drews Brian Goldfain

Yunpeng Pan Ching-An Cheng Xinyan Yan Kamil Saigol Keuntaek Lee
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Thanks!


