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Navigation

Go down the
hallway and take
the second right.




Navigation

Go down the
hallway and take
the second right.

Perception

Slam

Planning

Controls
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Navigation

Sensors, hardware, geometry, determine how robot perceives the world

Go down the
hallway and take

_ Hearing
the second right.




Navigation

And what it can do. How it can communicate, move, and interact.
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Go down the
hallway and take
the second right.




Abilities

Let’s focus on the robot abilities, and learn the foundational motion behaviors.
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Essential Navigation behavior

Moving obstacle avoidance
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Navigation behaviors based on robot’s abilities

Moving obstacle avoidance

for real robots

e With primitive sensors

e Robust to noise

e Dynamically feasible

e Transfers between
environments




Navigation behaviors based on robot’s abilities

Moving obstacle avoidance

for real robots

e With primitive sensors

e Robust to noise

e Dynamically feasible

e Transfers between
environments

Behaviors to learn:
e Point to point navigation
e Path following




Learning navigation behaviors end to end

Under submission,

Hao-Tian Lewis Chiang*, Aleksandra Faust*, Marek Fiser, Anthony Francis
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https://arxiv.org/abs/1809.10124

Learning navigation task
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Observation, o

DDPG

[Lillicrap et al. 2015]
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Critic
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Parameters, 6

Policy,
74(0, @) = P(alo)
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Observations

True objective: reach goal

Action
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I M - [Chiang et al., under submission]
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Learning navigation task

True objective: reach goal

Observation, o

[Mulling et al., “11]
= B
I

[Faust et al, “14]

[Bagnell and Schneider ‘01]

DDPG
[Lillicrap et al. 2015]
Actor Action :
Critic
Parameters, 6 Policy,
74(0, @) = P(alo)
Observations

Handles sensor input

J
17

Handles task and robot dynamics

Helicopter image from [Kober et al, ‘13]

Google @



Learning Navigation Task

& True objective: reach goal D
22x18 m
Observation, o
DDPG
[Lillicrap et al. 2015]
Actor Action
Critic Velocity and
orientation
@ 5 Hz

Parameters, 6 Policy,
74(0, @) = P(alo)

Q Observations: Noisy 1D lidar + goal + orlentatlon

_ I . - [Chiang et al., under submission]
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RL Setu o IS Hard Selecting reward is hard. (s | 8)=R(s, 6,

& True objective: reach goal D
22x18 m
Observation, o
DDPG
[Lillicrap et al. 2015]
Actor Action
Critic Velocity and
orientation
@ 5 Hz

Parameters, 6 Policy,
74(0, @) = P(alo)

Q Observations: Noisy 1D lidar + goal + orlentatlon

_ I . - [Chiang et al., under submission]
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RL Setup is Hard

Selecting reward is hard.

r(s|e)=

R(s, 6)

6 True objective: reach goal
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Observation, o

\li)DPG
[Lillicrap et al. 2015]

~Actor
. Critic

Parameters, 6 Policy,

(0, @) =

P(alo)

Action

Velocity and
orientation
@ 5 Hz

22x18 m

Q Observations: Noisy 1D lidar + goal + orlentatlon

Network architecture selection is hard.

[Chiang et al., under submission]
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Shaped-DDPG

DDPG Agents
Training in parallel
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Select best policy

Select new weights

5 N

Spawn new training
agent

Solution: large-scale gradient-free hyper-parameter optimization.
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S h a. p ed = D D P G [Chiang et al., under submission]

Find the best reward function S r(s | @) = R(s, @)
that maximizes the true BRSO W
- . raining In parallie
objectlve gl \ Shape the reward,

fixed network

Select best policy

Select new weights

5 N

Spawn new training
agent

Solution: large-scale gradient-free optimization. Google @



S h a. p ed = D D P G [Chiang et al., under submission]

Find the best reward function S r(s | @) = R(s, @)
that maximizes the true DORBATETD mte/
- . raining In parallie
objectlve gl \ Shape the reward,

fixed network

Select best policy

Each agent
uses different
reward function

Select new weights

5 N

Spawn new training
agent

Solution: large-scale gradient-free optimization. Google ﬁ
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S h a. p ed = D D P G [Chiang et al., under submission]

Find the best reward function ~——  Number of neurons
that maximizes the true DDPGAgents | [~—————| in each layer in

.. - E | t agn
objective ML P v . actor and critic Shape the reward,
fixed network

Find the best NN architecture,

that maximizes the reward Select best policy

r(sl o)

Shape actor and critic,
fixed reward

Select new weights

5 N

Spawn new training
agent

Solution: large-scale gradient-free optimization.




S h a. p ed = D D P G [Chiang et al., under submission]

Find the best reward function ~——  Number of neurons
that maximizes the true DDPGAgents | [~—————| in each layer in

.. - E | t agn
objective ML P v . actor and critic Shape the reward,
fixed network

Find the best NN architecture,

that maximizes the reward Select best policy

r(sl o)

Each agent uses
different neural
network architecture.

Shape actor and critic,
fixed reward

Select new weights

s N

Spawn new training
agent

Solution: large-scale gradient-free optimization.




Shaped-DDPG Learning Results for Path Following
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Reward only shaping
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[Chiang et al., under submission]
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1000 trails, 5 million steps each @ 5Hz - trains in a week




Shaped-DDPG Learning Results for Path Following
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1000 trails, 5 million steps each @ 5Hz - trains in a week. [Chiang et al., under submission]

Stable learning, consistent trials
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Shaped-DDPG Learning Results for Path Following
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1000 trails, 5 million steps each @ 5Hz - trains in a week [Chiang et al., under submission]

Equivalent of 32 years of collective experience. Stable learning, consistent trials
12 days each trial, learning from previous generations Google Q




Shaped-DDPG Learning Results for Path Following
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Shaped-DDPG Evaluation

e Two baselines
e Learned: Vanilla DDPG
e (lassic: Artificial potential Building 1, 183 by 66m
fields
e Evaluation environments
e 3 large buildings
e With moving obstacles

Training, 23 by 18m Building 2, 60 by 47m Building 3, 134 by 93m
[Chiang et al., under submission] Google @




Shaped-DDPG Evaluation: Success Rate

Higher success rate across all buildings
10
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Success Rate

Point to point

Success rate:
shaped-DDPG, vanilla DDPG, classic APF

Success Rate
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[Chiang et al., under submission] Google



Shaped-DDPG vS. vanilla DDPG - - .

Shaped-DDPG: smooth
trajectories

Vanilla DDPG: suboptimal
behavior

[Chiang et al., under submission]  (Google @



Shaped-DDPG Evaluation: Impact of Noise

Shaped-DDPG policy is more robust to noise

20

=0 Lo P2p N
- F2P - - ¢ O gmamg—
Eog % ° ™ £og 5 Ve
é _ @ o v 0N -a= FP2P
g O MR s =]
tons tons &
< - - 02
- 02 02 2
00
00 00 1> @ . "
00 22 04 05 0f LC 00 32 04 05 O0F 1T 0.0 ol C'L’ ::: sl
Sroc=ss Nuise (s, rad/s! L dar Mo e [0 -talzelun ae i
Point to Point
-0 - F =0 —a W =0 —
. 20F & 0F L ous sor
£ us s V¢ &
é é H ¢ — v OO0 i —
v O e—— v 0 v
v Y ons o N4
g 04 £ -
- 02 - 02 = 02
00
00 00 1> 0 - -
00 22 04 05 0f LT 00 22 04 05 0f LT 00 42 01 06 02 1O
Process Moise (11 L dar Mo s (110 Lotal zal on Moise (0

Path Following

[Chiang et al., under submission] Google @



Shaped-DDPG: On-robot experiments
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Point to point Path following
[Chiang et al., under submission] Google







Impact of Number of Obstacles

No Moving obstacle 30 moving obstacles
Google @

[Chiang et al., under submission]
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Navigation behaviors based on robot’s abilities

Transferable to new environments
Easy sim2real

Learned end-end methods handle noise.

Shaping optimizes the trajectories.

Traditional methods: well behaved, brittle.

Handles:
Sensors to controls, dynamics, noise
Obstacle avoidance




Navigation capabilities:
Learn to navigate by looking at a map

PRM-RL: Long-range Robotic Navigation Tasks
by Combining Reinforcement Learning and Sampling-based Planning
ICRA 2018, https://arxiv.org/abs/1710.03937, Best paper in Service Robotics

Aleksandra Faust, Oscar Ramirez, Marek Fiser, Kenneth Oslund, Anthony Francis, James Davidson
Lydia Tapia
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How to navigate to a location on a map?

Transferable to new environments
Easy sim2real

-
v an

: - -

Handles:

Sensors to controls, dynamics, noise
Obstacle avoidance

Lacks context needed for navigation. Google @



Related work: Sampling-based planners

e Long-distance collision-free navigation

o  Approximate all possible robot motions
o Sample and connect robot poses
o Connect them with small, feasible, motion

transitions — 5 | [LaValle &
Checking validity of pose transitions is N oA\ e
. p— iy
expensive S
o=

Sampling based planners that create

reusable roadmaps
o Often consider geometry only

[LaValle & Kuffner, ‘01]

[Kavraki et al. ‘96]
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Related Work: Probabilistic Roadmaps (PRMs)

[Kavraki et al. ‘96]

e Building
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Related Work: Probabilistic Roadmaps (PRMs)

[Kavraki et al. ‘96]
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e Building

o Sample configuration space
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Related Work: Probabilistic Roadmaps (PRMs)

[Kavraki et al. ‘96]

e Building
o Sample configuration space
o Reject in-collision samples




Related Work: Probabilistic Roadmaps (PRMs)

[Kavraki et al. ‘96]

e Building
o Sample configuration space
o Reject in-collision samples
o Connect samples only if a local
planner finds a collision-free path




Related Work: Probabilistic Roadmaps (PRMs)

[Kavraki et al. ‘96]

e Building

o Sample configuration space
o Reject in-collision samples .
o Connect samples only if a local

planner finds a collision-free path
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Related Work: Probabilistic Roadmaps (PRMs)

[Kavraki et al. ‘96]

e Building

o Sample configuration space
o Reject in-collision samples .
o Connect samples only if a local
planner finds a collision-free path
e Querying . [
A
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Related Work: Probabilistic Roadmaps (PRMs)

[Kavraki et al. ‘96]

e Building
o Sample configuration space
o Reject in-collision samples
o Connect samples only if a local
planner finds a collision-free path

e Querying
o Add start and goal to the roadmap f




Related Work: Probabilistic Roadmaps (PRMs)

[Kavraki et al. ‘96]

e Building
o Sample configuration space
o Reject in-collision samples
o Connect samples only if a local
planner finds a collision-free path

e Querying
o Add start and goal to the roadmap f
o Find the shortest path in the graph




Related Work: Probabilistic Roadmaps (PRMs)

[Kavraki et al. ‘96]

e Building
o Sample configuration space
o Reject in-collision samples
o Connect samples only if a local
planner finds a collision-free path

e Querying
o Add start and goal to the roadmap f
o Find the shortest path in the graph

e Path following
o Path guided artificial potentigl fields »o15
o Reinforcementdgargingo i,




PRM-RL Algorithm
Trained point to point
agent - basic
navigation behavior.

RL Agent

@54

[Faust et al., ICRA 2018]
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PRM-RL Algorithm

Trained point to point
agent - basic
navigation behavior.

One time setup

[Faust et al., ICRA 2018]
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PRM-RL Algorithm

@E

Trained point to point
agent - basic
navigation behavior.

One time setup

Add an edge only if
RL agent can consistently
navigate between two nodes

[Faust et al., ICRA 2018]
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PRM-RL Algorithm

Trained point to point
agent - basic
navigation behavior.

One time setup

Add an edge only if
RL agent can consistently
navigate between two nodes

Execute long trajectories

[Faust et al., ICRA 2018]
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PRM-RL: Indoor Navigation Building PRMs

60x larger than the training

20 trials with 85% confidence

[Faust et al., ICRA 2018]
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PRM-RL: Indoor Navigation Building PRMs

2 hours to build

Largest roadmap:

1700 nodes
60 000 edges
23 million collision checks

One-time set-up

[Faust et al., ICRA 2018]

Google



PRM-RL: Results for Indoor Navigation

Longest trajectory 215 meters

45 waypoints

[Faust et al., ICRA 2018]
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PRM-RL Experimental Results
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Four noisy trials

All successful, because the map is tuned to the
robot’s abilities

[Faust et al., ICRA 2018]
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How to navigate to a location on a map?

Transferable to new environments
Easy sim2real

-
> &

¢ -
Navigates over long distances. _
Requires one time set-up. Handles:

Sensors to controls, dynamics, noise
Obstacle avoidance




Navigation capabilities: Following Directions

Following Natural Language Navigation Instructions with Deep Reinforcement Learning

Under submission
Aleksandra Faust, Chase Kew, Dilek Hakkani-Tur, Marek Fiser, Pararth Shah

FollowNet: Towards Robot Navigation by Following Natural Language Directions with

Deep Reinforcement Learning

MLPC @ ICRA 2018,
Pararth Shah, Marek Fiser, Aleksandra Faust, Chase Kew, Dilek Hakkani-Tur

¢ Ve sl Te
N - An

Pararth Shah Marek Fiser Aleksandra Faust J. Chase Kew Dilek Hakkani-Tur

Confidential + Proprietary
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https://arxiv.org/abs/1805.06150

How to follow directions?

One time building / robot setup.

Transferable to new environments
= S Easy sim2real

)
Go down the -
hallway and take Hearing

the second right.

Sensor to controls, dynamics, noise
Obstacle avoidance




Following instructions

Go down the hallway and take the second right.

[Shah et al., 2018]
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Following instructions

Go down the hallway and take the second right.

Dataset:
150 instructions
2 buildings

[Shah et al., 2018]
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Following instructions: Related work

Environment complexity

Processed,

language tokens

Unfiltered, natural
language

Partial

[Das et al, 2018]

[Thomason, et al, 2015]

[Mei et al.,2016]
[Chaplot et al., 2018]

[Arumugam et al. 2017]

[Anderson et al., 2017]

FollowNet
[Shah et al., 2018]

[Thomason et al., 2017]

[Misra et al. 2017]
[Yu et al. 2018]

observations

Full environment
observability

P

Language complexity

Google



Following instructions: RL Training

& Reward: waypoint reached D
DQN Agent Actions: World
[Mnih et al. 2015] Turn left, turn
Observation, o right, go straight

m ’ FollowNet ‘ Action

’ Architecture ‘ :>

Parameters, 6 Policy,
74(0, @) = P(alo)

Q Observations: Images and NL instruction D

Go down the hallway and take a second right. m

[Shah et al., 2018]
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FollowNet: Architecture
Task

“Walk down the halway and
wrn left at th2 cining table”

3, 8, and 16 outputs
[1,1], [4,4], [3,3]

Semaznlic
Seynrantation
Map

t [F][R]  Agent
Acton
// \
/7 Toecforwerd ,Jﬂ 16 and 8 hidden layers
ayars \,
N\
\9 ] vo l VK
v
Foaclorwad
Laysrs
Cordtioniag - eluce_nean i
o Attantion
= [a][a [al[a][a]~[o] <« weontss

Vak cown the hilvay asd ... lable
Degth Map _ Niwal Languaje nstruston
8 and 16 outputs

[4, 4], [3, 3] kerne
2, 1 strides

(%]

output
’ 16 hidden state

Bdredtiona
-l STM
outouts, o 32 outputs

[Shah et al., 2018]
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FollowNet: Results

Baseline: model without attention

“J’ﬁw&bu !‘:’:'N: .'MtoJ\‘/i\'l

Better learning curve than the baseline

T L1 s
e

Attention over steps

Learns what to ignore

.....

[Faust et al., under submission]

Google

Learns what is important
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Mumbes of ep sodes

Instruction complexity

w

Waypaoints reached
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£ Steps
Number of waypoints measures the instruction complexity, not number of words or path length.

[Faust et al., under submission]
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FollowNet on New Instructions

~

. ollowrnss.
m Withaut Artantan

A
=

L
<

Humte- at ap sodss
3 B

>

’
-~ -

Murmber nl waypomls resched

52% success on new instructions
67% at least partial success
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FollowNet
performance per word

4

Words with spatial semantics are
more likely to be successful

raction successiul instructinns
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[Faust et al., under submission]






How to follow directions?

One time building / robot setup.

Transferable to new environments
= S Easy sim2real

Go down the
hallway and take
the second right.

Sensor to controls, dynamics, noise
Obstacle avoidance

Does not require building set-up.
Promising results. Google



From robot abilities to navigation capabilities

End to end complex navigation

tasks

B .
I = I r - A&
L W - PR -
e y v o oo
RO ol iy ¥

.

Q“

Go down the hallway <
and take the second
right.
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Navigation

Go down the
hallway and take
the second right.

Perception

Slam

Planning

Controls
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Navigation

Go down the
hallway and take
the second right.

3

Sight

D

Hearing
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Complex Tasks
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Basic
behaviors




Navigation

Thank you!

QUESTIONS
?

Basic
behaviors

Complex Tasks
Simple tasks
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