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m Going into the Realvorld THE ROBOTICS INSTITUTE

A Robot models and simple world interactions can beepmoded

A Planning on thosmodels enablethe robots to operate under
benign/narrowconditions rightaway
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§b8p1  Learning in Searchased Planninreteisis
Speeding up Learning Going beyond
planning cost function the priormodel

Waseda
Mitsubishi

Reuse of previous results within search (
Learning heuristic function@8hardwajetal , 6 1 7 ; Paden & Frazzol
Learning order of expansion€fioudharyet al ., 601 7)
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sBpd  Learning in Searchased Planninye=ii

Speeding up Learning Going beyond
planning cost function the priormodel

Crusher (fromRatlifet a. , 609 paper)
Learning a cost function frombemonstrations (Ratlig t a Muliméi€edt; a |
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m Learning in Searchased Planniijreenessme

Speeding up Learning Going beyond
planning cost function the priormodel

Learning additional di mensi c
Combining learned skills and prior model (Vasudev et al., ong
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§b8p1  Learning in Searchased Planninreteisis
Speeding up Learning Going beyond
planning cost function the priormodel

Waseda
Mitsubishi

Reuse of previous resul tslsviamiet selar,chl §
Learning heuristic function@8hardwajetal , 6 1 7 ; Paden & Frazzol
Learning order of expansion€fioudharyet al ., 601 7)
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sbpl Experience Graphspni 1 1ips wepoeongifsin:

A Many planning tasks are repetitive
- loading a dishwasher
- opening doors
- moving objects around a warehouse

V4

- €

A Can we reuse prior experience to
accelerate planning, in the context of
searchbased planning?

A Especially useful for higdimensional
problems such as mobile manipulation!
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Given a set of previous paths

2 ¢
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sbpl Experience Graphspni 1 1ips wepoeongifsin:
Put them together into d&graph (Experience graph)
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sbpl Experience Graphspni 1 1ips wepoeongifsin:

Given a new planning querye
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sbpl Experience Graphspni 1 1ips wepoeongifsin:
éwoul d [-us&kbEgraph to speed up planning in similar situatic

start

Maxim Likhachev Carnegie Mellon University 11



sbpl Experience Graphspni 1 1ips wepoeongifsin:
éwoul d [-us&kbEgraph to speed up planning in similar situatic

Re-use is via focusing search with a recomputg€yheuristic function:
N-1
hS(SO) = Mmin Z mi”{EShG(Sz‘, Sit1), CS(Sz', Sit+1)}
1=0

start
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m Experience GraphsSpni 1 1 i ps weposongpipsmre

@ \M General idea: +uatic
Instead of biasing the search towards the goal, heuristics

ReUse is v_v_(s) biases it towards set of paths in Experience Qf"i‘.'?,h. anction:

N-1
he (so) = mTZn Z min{e®h® (s, si41), ¢ (54, 5i41)}
i=0

start
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e W.o . A e . amaituatic
[y 0S 0O2YLzi SR @Al I aAy3at s
Experience Graph
h (so) = min z_: min{e®h® (s, si41), ¢ (54, 5i41)}
i=0

start
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éwoul d [-us&kbEgraph to speed up planning in similar situatic

Re-use is via focusing search with a recomputéyiheuristic function:
N-—1
h (so) = min Z min{e®h® (s, si41), ¢ (54, 5i41)}
1=0

NN NI

heuristics (s) Is guaranteed to beconsistent

| w '\.v oa
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sbpl Experience Graphspni 1 1ips wepoeongifsin:
éwoul d l-usekkEgraph o spearl up planning in similar situatic

Re-use is via focusing search with a recomputéyiheuristic function:
N-—1
h‘g(so) = mTZn Z min{eghG(si, Sit1), cg(si, Sit1)}

72=0

Theorem 1Algorithm is complete with respect
to the originalgraph

Theorem 2The cost of the solution is within a
given bound on subptimality

start

I

goal
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m Application of Experience Graphgsrenisii:

A Learning to plan faster from experience and demonstrations
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m Learning in Searchased Planniijreenessme

Speeding up Learning Going beyond
planning cost function the priormodel

A AT

Learning additional di mensi
Combining learned skills and prior model (Vasudev et al., ong
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" e . . Ca
ml Learnlng Additional Dimensions ™eresorics iNstuTe

A Learning Additional Dimensions in the Graph from Demonstratia
[Phillipseta.,RS S0 1 3]
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m Learnlng Additional D|mens'onSmERosoncs'ihsrmnE

A Learning Additional Dimensions in the Graph from Demonstratia

[Phillipseta.,RS S0 1 3]
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